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Abstract. We study the electron energy-loss spectra of strongly correlated electronic systems
doped away from half-filling using dynamical mean-field theory (d = ∞). The formalism can be
used to study the loss spectra in the optical (q = 0) limit, where it is simply related to the optical
response, and hence can be computed in an approximation-free way in d = ∞ dimensions. We
apply the general formalism to the one-band Hubbard model away from n = 1, with inclusion
of site-diagonal randomness to simulate effects of doping. The interplay between the coherence-
induced plasmon feature and the incoherence-induced high-energy continuum is explained in terms
of the evolution in the local spectral density upon hole doping. Inclusion of static disorder is shown
to result in qualitative changes in the low-energy features, in particular to the overdamping of
the plasmon feature, resulting in a completely incoherent response. The calculated lineshapes of
electron energy-loss spectra are compared to the lineshapes of experimentally observed spectra
for the normal state of the high-Tc materials near optimal doping and good qualitative agreement
is found.

The ac conductivity and dielectric tensor provide valuable information concerning the finite-
frequency, finite-temperature charge dynamics of an electronic fluid in a metal. The dramatic
changes in the electronic state from localized to itinerant across an insulator–metal (I–M)
transition, be it driven by pressure or by doping the insulator, are reflected in concomitant
changes in the optical responses. These studies, therefore, give one a systematic picture
describing the nature of the change in the electronic state, the appearance of new low-energy
excitations, and their dispersion and stability. For cuprate superconductors, for example, these
studies have convincingly demonstrated the non-Fermi-liquid nature of the charge [1] and
spin [2] dynamics in the normal state.

The optical response of a solid provides an estimate of the carrier scattering rate at finite
frequency, and thus gives detailed information about the finite-frequency collective excitations
responsible for scattering the carriers. In a quantum paramagnetic metal, the dominant
carrier scatterers are electron–hole pairs, which are the low-energy collective excitations—it
is precisely the e–h spectrum which is measured by electron energy-loss spectroscopy (EELS)
which provides one with a direct experimental picture of the spectral density of particle–hole
excitations in a solid [3].

In a weakly interacting system, one expects the details of the particle–hole spectrum to be
sensitive to details of the shape and size of the Fermi surface (e.g., its curvature). That such a
picture is untenable for strongly correlated systems was pointed out by Shastry et al [4], who
argued that in this case, the whole Brillouin zone tends to get populated. Another important
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point of considerable relevance is the transfer of spectral weight over large energy scales that is
characteristic of strongly correlated systems—it has no analogue in weakly interacting Fermi
systems. Consequently, one expects qualitatively different responses in this case, compared
to those characteristic of weakly interacting systems.

Quite generally, the transmission EELS lineshape is related to the wave-vector- and
frequency-dependent dielectric function via the equation

I (q, ω) = −Im
1

ε(q, ω)
. (1)

Following reference [3], we employ the random-phase approximation (RPA) to treat the small-
q part. In the optical limit that we are interested in (q → 0),

ε(q → 0, ω) = 1 + 4π
iσ(ω)

ω

where σ(ω) is the longitudinal optical conductivity. The analysis carried out along these lines
is invalid when qa � 1, where the short-ranged part of the potential has to be considered and
the RPA is inadequate. However, local correlation effects are correctly incorporated into the
above equation via σ(ω), which can be computed reliably with d = ∞, for example. In this
limit, q � 0, the particle–hole spectral density is obtainable from the dissipative part of [3]:

I (0, ω) = −Im
1

ε(0, ω)
= ε′′(ω)

ε′2(ω) + ε′′2(ω)
(2)

with

ε′(ω) = 1 − 4πσ ′′(ω)
ω

ε′′(ω) = 4πσ ′(ω)
ω

so one needs to have an estimate of the longitudinal dielectric constant to calculate the EELS
spectrum. It is to be noted that this yields the EELS lineshape corresponding to the experiment
performed in the so-called ‘transmission mode’. Thus, the problem has now been reduced to
that of computing ε(ω), which, being a local quantity, can be computed in an approximation-
free way for d = ∞ [5].

In this communication, we want to develop a theory of the transmission EELS
(equation (1)) for electronic systems which undergo Mott transitions as a function of
band filling [5]. To be specific, we consider the one-band Hubbard model, where the Mott
transition can be driven by hole doping the Mott insulator, or by pressure (which changes the
ratio U/t). To capture more fully the effects of chemical substitution (which is how doping
is carried out in practice), we also introduce static, site-diagonal disorder in the model. The
resulting Hamiltonian is

H = −
∑
ijσ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ −
∑
i,σ

(vi − µ)niσ (3)

as a prototype model describing the electronic degrees of freedom in TM oxides. To study
the 3D case, we employ the d = ∞ approximation, which is the best among those currently
available to study the M–I transition [5]. Since this method has been extensively reviewed,
we only summarize the relevant aspects. All transport properties, which follow from the
conductivity tensor, are obtained from a k-independent self-energy for d = ∞; the only
information about the lattice structure comes from the free band dispersion in the full Green
function:

G(k, ω) = G(εk, ω) = 1

ω + µ − εk − �(ω)
. (4)
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Solving the model for d = ∞ requires a reliable way to solve the single-impurity Anderson
model (SIAM) embedded in a dynamical bath described by the hybridization function, �(ω).
There is an additional condition that completes the self-consistency:∫

dε G(ε, iω)ρ0(ε) = 1

iω + µ − �(iω) − �(iω)
(5)

where ρ0(ε) is the free DOS (U = 0). The above equations (3), (4) refer to the disorder-free
Hubbard model. With microscopic, binary disorder (which is the only type that we consider
here):

P(vi) = (1 − x)δ(vi) + xδ(vi − v) (6)

only the disorder-averaged quantities are physically observable. In this case, we use an
extended version of the iterated perturbation theory (IPT), which combines the effects of
dynamical correlations (via usual IPT) with those of disorder (via the CPA) in a self-consistent
way. For the sake of completeness, we outline the calculational details briefly. As a first step, we
compute the full local Green function for the pure model using IPT. This has been shown [5] to
yield results in excellent agreement with those obtained from exact-diagonalization techniques.
This IPT propagator is then corrected for repeated scattering from local disorder by computing
the new self-energy from the usual CPA [6]:

〈Tii[�(ω)]〉c = −(1 − x)�(ω)

1 + �(ω)G(ω)
+

x(v − �(ω))

1 − (v − �(ω))G(ω)
= 0 (7)

which results in an implicit equation for the interaction- and disorder-corrected self-energy
(and Green function). To make the treatment self-consistent, we compute the new IPT self-
energy using the new GF computed with the IPT + CPA in the first step. This procedure
is repeated until convergence is achieved. At each step of the iteration, we fix the chemical
potential from the Luttinger sum rule:

n =
∫ µ

−∞
ρ(ω) dω = x.

This extended IPT yields the local propagator, 〈Gii(ω)〉, corrected both for dynamical
correlations and disorder-induced repeated scattering, both treated on the same footing [6].
For d = ∞, this is sufficient for computing the transport, because the vertex corrections in
the Bethe–Salpeter equation for the conductivity vanish identically in this limit [7]. Thus, the
conductivity is fully determined by the basic bubble diagram made up of fully interacting local
GFs of the lattice model.

The optical conductivity and the Hall conductivity are computable in terms of the full
d = ∞ GFs as follows [7]:

σxx(iω) = 1

iω

∫
dε ρ0(ε)

∑
iν

G(ε, iν)G(ε, iν + iω). (8)

The dynamical dielectric constant is directly calculated from the optical conductivity via

εxx(ω) = 1 +
4π

ω
iσxx(ω) (9)

yielding its real and imaginary parts. Use of equation (3) then permits us to study

IEELS(ω) = −Im
1

ε(ω)
.

Before embarking on a description of our results and their analysis, it is instructive to
summarize what is known about the d = ∞ Hubbard model. At large U/t , and away from
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half-filling (n = 1), the ground state is a paramagnetic FL if one ignores the possibility
of symmetry breaking towards antiferromagnetism, as well as disorder effects, which are
especially important near n = 1. This can be achieved formally by introducing a nnn hopping,
which for d = ∞ leaves the free DOS essentially unchanged [5]. This metallic state is
characterized by two energy scales: a low-energy coherence scale Tcoh, below which local FL
behaviour sets in [5], and a scale O(D) (D is the free bandwidth), characterizing high-energy,
incoherent processes across the remnant of the Mott–Hubbard insulator at n = 1. At T < Tcoh,
the quenching of the local moments leads to a response characteristic of a FL at small ω � 2D
(but with the dynamical spectral weight transfer with doping, a feature of correlations), but
at higher T > Tcoh, the picture is that of carriers scattered off by effectively local moments,
which makes the system essentially like a non-FL (note that a metal with disordered local
moments is not a FL).

The picture is modified drastically in the presence of static, diagonal disorder, in which
case the extended IPT has to be used. For weak disorder, the above picture is qualitatively
unaffected, and the only interesting features are that Luttinger’s theorem is violated, and the
FL quasiparticles acquire a finite lifetime at µ [6]. However, with increasing disorder, repeated
scattering effects destroy the quasiparticle picture, and the metallic state is characterized by
an incoherent, non-FL response with a pseudogap structure in the DOS. Similar results were
obtained earlier in reference [8], where a T -matrix approximation was employed to treat
disorder-induced resonant scattering. The above describes the competing tendencies of the
correlation-induced low-temperature coherence scale, Tcoh, in the d = ∞ Hubbard model,
and the disorder-induced incoherence, which tends to suppress it, driving it eventually to zero,
leading to a non-FL metal state. A large enough disorder strength leads to band splitting, as
in the usual CPA, leading to a continuous transition to a disorder-driven insulating state.

Armed with this information, we are ready to discuss our results. We choose a Gaussian
unperturbed DOS, and U/D = 3.0 to access the strongly correlated FL metallic state away
from n = 1, ignoring the possible instability to an AF-ordered phase. All calculations are
performed at a low temperature, T = 0.01D. We are mainly interested in the variation of the
EELS lineshape with hole doping, given here by δ = (1−n). This fixes the chemical potential,
and the FL resonance position, and the IPT describes the evolution of spectral features in good
agreement with exact-diagonalization studies [5]. In view of the ability of the IPT to reproduce
all the qualitative aspects observed in σxx(ω), we believe that it is a good tool in the present
case. Figure 1 shows the optical conductivity and the longitudinal dielectric constant. σxx(ω)

agrees with calculations performed earlier in all the main respects; in particular, it clearly
exhibits the low-energy quasicoherent Drude form, the transfer of optical spectral weight from
the high-energy, upper-Hubbard-band states to the low energy, band-like states with increasing
hole doping, and the isosbectic point at which all the σxx(ω) curves as functions of filling cross
at one point, to within numerical accuracy. It is interesting to note that such features have also
been observed in experimental studies†. Correspondingly, Im εxx(ω) also shows the isosbectic
point, the explanation for which is identical to the heuristic one proposed recently by us for
the case of σxx(ω) [10].

In figures 2 and 3, we show the theoretically calculated EELS spectra for U/D = 3.0
and for different band fillings as functions of disorder strength, v. This allows us to access
the intermediate-correlation regime, where the absence of any small parameter in the problem
requires the use of controlled methods that interpolate correctly between the weak- and strong-
coupling limits (such as the d = ∞ method used here). From the calculation of the optical
response, we have checked that Im σxx(ω = 0) = 0, implying that −Re 1/ε(0) = 0, as

† See, for example, the various cases discussed in the review of reference [2].
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Figure 1. The real part of the optical conductivity σxx for U/D = 3.0, δ = 0.1 (continuous)
and δ = 0.2 (dot–dashed). The lower panel shows the imaginary dielectric constant for the same
parameter values. Note that there is an isosbectic point for each of the quantities.
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Figure 2. The electron energy-loss spectra for the doped Hubbard model for U/D = 3.0, and
δ = 0.1, 0.2, 0.3 as shown.

required [11]. WithU/D = 3.0, we observe a peak atω � U/2, associated with the transitions
from the lower Hubbard band to the quasiparticle resonance. We associate this peak with the
strongly renormalized particle–hole excitations in the strongly correlated metal. In this context,
two features are worthy of mention: at low energy, the loss intensity goes quadratically with
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Figure 3. The EELS spectra for the d = ∞ Hubbard model for U/D = 3.0 and v/U =
1/4, 1/3, 1/2. See the text for the explanation of various structures in IEELS(ω) in the light of the
underlying structure of the local spectral density of the Hubbard model for d = ∞.

ω, and the particle–hole peak position shifts with increasing doping. The shift of this feature
correlates with that of the mid-IR peak in the optical conductivity (figure 1), and is thus a clear
manifestation of the transfer of optical weight to lower energy with hole doping. Moreover,
appreciable loss intensity is observed at higher energies (ω > 2.0) as a smooth continuum, in
contrast to the expectations from a weakly correlated (with very small U/D) FL. This clearly
shows how the delicate balance between coherence and incoherence is controlled by the transfer
of optical spectral weight in the full EELS spectrum. In fact, we expect the coherent feature
in the full spectrum to become sharper as T (0.01D in our analysis) is lowered further. We
see from the above that coupling to high-energy, incoherent, multiparticle excitations strongly
renormalizes, but does not destroy, the coherent response in a strongly correlated Fermi liquid.
However, the analysis presented above shows that a proper treatment of coherence (related to
itineracy) and incoherence (coming from the local, atomic-like features) on an equal footing
is necessary to obtain consistent results. The EELS at very low energy are well described by a
Drude fit, but features like the damped plasmon peak at ω/D � 1.0 are distinctly non-Drude-
like, and can only be reliably accessed by the full analysis, as described above.

Given the above, we expect small coherence-destroying perturbations to tilt the balance
in favour of low-energy incoherence. Consideration of doping-induced static disorder has
precisely such an effect on the low-energy EELS spectrum. Consistently with the disorder-
induced smearing of the Drude part in σxx(ω), the coherent part in the EELS spectrum is
replaced by a broad peak, which still shows remnants of the coherent peak at v = 0 (v = U/4).
However, the low-energy ω2-dependence in the pure case is replaced by a linear ω-dependence
in this case. The complete destruction of the quasiparticle behaviour in the DOS and the
Drude-like response at v = U/3 is consistent with the complete destruction of the ‘coherent’
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peak in the EELS spectrum; we understand this as overdamping of the collective p–h peak by
disorder-induced strong scattering as v is increased. In the strong-disorder regime, the metallic
state is incoherent with a pseudogap feature in the DOS [10], and the action of the potential
Vkk′ between the Hubbard band states does not create well-defined elementary excitations,
leading to an incoherent response at low energy.

In experiments carried out on the cuprates in their normal state, a very broad plasmon
peak is revealed [11], implying poorly defined plasmon excitations in the correlated metallic
state. These studies also reveal that the optic ‘plasmon’ disperses quadratically (in q). Recent
studies indicate an acoustic-like heavily damped plasmon mode at small q [12] with a linear ω-
dependence in Bi2Sr2CaCu2O8, along with a single broad peak. We cannot directly compare
our results to those of [12]; the EELS experiment was carried out in the reflection mode,
and this measures the quantity Im g(0, ω), which is not directly related to what we have
calculated here. However, looking at the results of [11], we see that the essential features seen
there are indeed reproduced by our calculation. To make contact between our calculations
and experiments, we shall suppose that the one-band Hubbard model is understood to be the
effective model describing the coupled-spin-carrier dynamics in the Cu–O planes. We will also
assume that band-structure effects are not crucial to the case under study, and that the source
of the anomalous behaviours is rooted in the dynamical effects of the strong, local Hubbard
interaction, an assumption well supported at doping levels near the optimal one [13]. We stress
that the above conditions will be modified in the pseudogap phase, where the precursor effects
of d-wave pairing fluctuations—intrinsically non-local—are appreciable [14]. In this doping
range, the dynamical effects of non-local correlations will probably lead to even stronger
deviations from a FL picture, though a concrete calculation including such effects remains to
be developed. With these caveats in mind, we find good qualitative agreement between our
results for v = U/3 of figure 3 and the experimental EELS lineshapes [11]: the quadratic (in
ω) behaviour at low ω, the broad ‘plasmon’ peak (strongly damped), the asymmetric lineshape,
and the continuum response at higher energy are all reproduced in qualitative agreement with
experiment. It would be interesting to check whether the plasmon peak shifts to lower energies
with hole doping; this would be an interesting check on the validity of the approach presented
here. The comparison is quite good up to ω/D � 3.0, beyond which the simple single-band
modelling does not apply anyway.

There is extensive experimental work [15] indicating that the metallic phase above Tc near
optimal doping in cuprates is not describable in terms of Landau Fermi-liquid ideas. Prelovsek
et al [16] have recently considered the question of the EELS lineshape in the t–J model, making
use of results obtained from finite-temperature Lanczos techniques. Within our approach, it is
known that the metallic state away from n = 1 above the lattice coherence scale, Tcoh, is not
a Fermi liquid [5]; the calculation carried out above is then consistent with the non-FL charge
dynamics if Tcoh can be driven sufficiently low (below 0.01D used here). A very low Tcoh

near n = 1 for U/D near the Mott transition is precisely what we expected [5]. Comparing
our results with those found in [16], we observe that our results are in nice agreement with
those of [17], but the results presented here are more transparent, being based on an analytical
scheme. In addition, the results show that the d = ∞ approach is capable of producing
the low- and high-energy features on the same footing, and, moreover, permits us to include
effects of doping-induced static disorder in a consistent way. In view of this, we believe that the
approach described here should also be applicable to a wide variety of doped transition metal
oxides, where the combined effects of correlations and disorder are especially pronounced [2].
Additionally, effects of orbital degeneracy, etc, in real materials can be treated by a suitable
generalization of the above procedure [5]. This is a non-trivial problem, because the solution
of the impurity model is harder. We hope to address this issue in future work.
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In conclusion, we have considered the energy-loss function of a model for transition metal
oxides, and captured the effects of strong, local correlations and static disorder in a consistent
way. Comparison of our results with the experimental EELS spectra for cuprates in the ‘normal’
state above Tc near optimal doping shows that all the main observed features are consistently
reproduced by our calculation.
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